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PERTURBATION OF HOMOCLINICS AND SUBHARMONICS

IN DUFFING'S EQUATION

by

Jack K. Hale and Adalberto Spezamiglio

ABSTRACT

For (A\,u) and (g,f) small, the equation

3

X - x+2x° + g(x) = -AX + ufcos t + £(t)]

is considered near the separatrix S of the unperturbed equation (A,u) = (0,0).
For (g,f) in a neighborhood of the zero functions, a complete description

is given of the bifurcation curves in (A,H) - space to homoclinic points.

The perturbation of subharmonics outside S is also considered in a symmetric

and nonsymmetric case.
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Perturbation of Homoclinics and Subharmonics

in Duffing's Equation

I. Introduction

Recently, a considerable number of articles have been
devoted to the study of strange attractors and how some of them
arise near homoclinic orbits from successive subharmonic
bifurcations. Different methods have been used.

In (2], the reduction of Liapunov-Schmidt is used in
a second order equation with small time-periodic forcing and
damping, such c.hat the unperturbed equation has a homoclinic
orbit I' through zero. Regions in parameter space near zero are
described where there are either homoclinic points or no
homoclinic points for the perturbed equation near . Those
regions are defined by the bifurcation curves to homoclinic
points, and the same analysis is done with respect to subharmonic
sclutions. Furthermore, it is proved that the bifurcation curves
to subharmonics of order k approach the bifurcation curves to
homoclinic points as k » =, See also 1] for more details.

In [3], Greenspan and Holmes apply results based on
Melnikov's method [6] in Duffing's equation perturbed by small
dissipation and time-periodic forcing. In this case, the
unperturbed equation has a pair of homoclinic orbits r¥, r~
through zero. Some calculations are shown with respect to
homoclinic and subharmonic bifurcation curves. Also, perturbation
of subharmonic solutions outside the separatrix ¥y {0} v r°

is considered.




2
The above papers may be used for further references.

Here, we consider the perturbed Duffin, equation

(1.1) X - X + 2x3 + gi{x) = =A% + ulcos t + £(t)]

where g(0) = 0, g has continuous derivatives up through
order two in ([~-A,Al], A » 0, f is continuous, 2x-periodic
and o = (A,u) 1is a parameter in Rz. If g=0, £=0 and
p = 0, then equation (1.1) has a pair of symmetric homoclinic
orbits ¥, ~ through zero. We are concerned with the
behavior of the solutions of (l1.1l) near the separatrix

S = r+ v {0> vt~ for e, g and f small in a sense that
will be specified. Our treatment follows [2].

We will denote by Ckra,b1 the set of all functions g
that are continuous together its derivatives up throuah order k
in fa,b)], k a positive integer, with the Ck-norm iqlk .
B(R) 1is the set of all continuous and bounded functions f on
R with the supremum norm |f|_, and Pp 1is the set of all
continuous and T-periodic functions on R, with the norm
induced by B(R). If £ 1is in P2T' we say that £ 1is odd
harmonice in PZT if €£(t+T) = -£(t) for all t.

Consider now equation (l.1) with g an odd function
and |g|2 small. Then ', ©~ are still symmetric, and if in
addition £ 1is odd harmonic in PZn' that is, £(t+n) = =£(¢),
then the bifurcation curves in p-space to homoclinic points in
the left side of S near I  coincide with the bifurcation
curves to homoclinic points in the right side of $ near rt.
That is, we have sactors in o-space defined by two curves Cn’

cM in which we have either homoclinic woints in both sides near
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8 or no homoclinic points near S. 1In Theorem 1.1 we show

that the set of pairs (g,f) near (qg,f) = (0,0) for which the
above situation occurs is a manifold of codimension two in

(g, f)-space. Theorem 1.1 also gives a complete description of the curves

R 0 et T ¢ o A A

of bifurcation to homoclinic orbits for (g,f) in a neighborhood of zero
and not satisfying the above symmetry conditions.

Under the above symmetric conditions on g and f,

PO

we consider in section 3 the perturbation of subharmonic

solutions of odd order for the unperturbed equation outside S.
+ -

(For subharmonics inside T or T, see :2)). Here, we

applied the results in [{5]. We prove that thc bifurcation curves

Ck ’ Ck to subharmonics of order k, k odd, approach the
n’ M P

bifurcation curves Cm ’ CM ;, respectively, as k + =,

Finally, the generic case when the bifurcation curves
to homoclinic oints in the left and right side do not coincide,
is treated in section 4. We consider there the perturbation of
subharmonics of even order outside S for the unpertq;ped equation.
this case, we prove that the tanqgents to the bifurcation curves
to subharmonics at u = 0 anproach two curves that are not
related to the bifurcation curves to homoclinic points as before.
In fact, the limit lines will define a sector in parameter
space near p = 0 in which we have subharmonic solutions

outside S of even order k, for large K.
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2. Perturbation of the homoclinics

Consider the secomd order equation

3

(2.1) X - X+ 2x” 4+ g{x) = =-2%k + plcos t + £(t))

where g is in CZI—A,A] for a convenient A ~ 0, q(0) =0, f
is in Pzﬂ and o = (A,u) 1is a parameter in Rz. When g = 0,
f=0 and o = 0, the point (x,X) = (0,0) is a saddle point,
and the system associated to (2.1) has a pair of homoclinic
orbits *, 7, with a- and w-limit sets being {0}. We
are concerned with the behavior of the solutions of (2.1) in a
neighborhood of S =r1*u {0} v r~, for (o], lgt, and [£]_
in a neighbhorhood of zero.

Let us describe the problem more specifically. If |o|,
lgl2 and |f|_ are sufficiently small, equation (2.1) has a
2n~periodic solution ¢ = ¢(p,g,f) of small amplitude. Let

3

y = {{t,s(t),d(t)) 2 t ¢ R} be its trajectory in R’ and let

S = 8S(p,9,£), U =U(p,q,f) be respectively the stable and

3

unstable manifolds in R of vy. We know that the sets

S(t) = {(pr) € Rz : (t'pr) . 8} ’

Ult) = {(x,y) < R® : (t,%,y) « U}

are periodic. We are interested in the existence of a transverse
homoclinic point to P_ = (¢(0),4(0)) in a neighborhood of
S; that is, a point P ¥ Po , P . S(0) n U(0) where this
intersection is transversal.

When 4y =0 and f = 0, we can apply the results in
{2) separately to each loop rt and I". For each sne of .,

we obtain a pair of differentiable curves through zei.. in

N a4 mimvrne

P

P R




p-space, which define two sectors such that homoclinic points
appear near one loop for = in one sectrnr and no homoclinic
point occurs for  in the other. As we shall see below, we can
also give information about what happens in a neighborhood of
zero in the (q,f)-space. In the statement of our result,

figure 1 is helpful.

Theorem 2.1. There are neighborhoods ¥ of §, Vv

of o =0, W of (g,f) = 0 and two submanifolds Mm ‘ “M in

C2[-A,A] x P217 of codimension one, that divide W in four

regions (fig. l-a) and whose intersection M is a submanifold

of codimension two that divides “m ’ HM in two components,

such that:

(1) If (g,f) « WA\ (Mm U MM), there are two pairs of

distint Cz-curves C; ' Cé . i =1,2, which divide V in four

sectors (fig. l1-b) such that equation (1) has homoclinic points
in U 1in both sides of 8 for o ¢+ R, only in the right side
for o « R+, only in the left side for o . R- and no
homoclinic points in U for o in Ro‘

+ 1 _ .2 . _
(i1) If (g,f) ¢ Mm then Cn =% ~ Cn (fig. 1-¢) and we

have the same implications as in (i). Analogous statement holds

for (g,f) in M; . ;

(114) If (g,f) ¢ MM , the same analysis as in (ii) holds
1 2 )

and C. .

with respect the curves CM M

{iv) If (g,f) « M then we have the situation in fig. l-d

with the implications in (1i).
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Proof: For |g|, small, the equation

3

) X -x+2x° +g(x) =0

A unique solution P = ng) satisfying p(0) > 0, H(0)=0,p(t) + 0
E> +° . Let r' = {(plt),p(t)) : t « R}. If x is

lution of (2.1), the change of varibles
x(t-a) = p(t) + z(v)
2.1) leads to the following equation in z:

5 4 T-1+ 6p(t)2 + g'(p(t)) Iz = FY(t,2,2,0,a,9,f)

1.3)
F¥ (t,2,2,0,0,9,8) 985 Ap(t) - 22 + ulcos(t-a)+£(t=a) ]
- Gp(t)22 - 223 - g(p(t)+2)
+ gip(t)) + g'(p(t))z
Let P = Pg be the continuous projection defined on
) by |

Ph = p] d(t)h(t)dt/n ' n = j b(t)zdt .

ma 2.1 in (2] now implies §S(0) n U(0) has elements near rt

and only if

(a) PF+(-,Z,2,p,u,q,f) = 0
2.4) .
(b) z = K(I"P)F (‘,Z,z,p,u,g,f)
re Kh = th is the unique bounded solution on R of the

lation
4+ 01-1+6p(t)% + g'(p(t)))z = h(t),

in B(R), with initial value orthogonal to (p(0),p(0)).
We can now apply the Implicit Function Theorem to

tain & > 0, + > 0 such that equation (2.4-b) has a unique

oo




v —— .-

solution z} = z*(v,a,q,f) for |o| < &, |9|2 + |£]_ < s,

a « R, satisfyirg 23(0,4,0,0) =0 and lz:| < v. In fact,
z2*(0,a,9,f) =0 for a in R and |g|, + l£]_ < &. Therefere,
there exists a solution x = x(p,a,q,f) of (2.1) in the

v-neighborhood of r* if and only if
X(.=a) = p + 2%(p,a,9,f)

where (p,a,g,f) 1is solution of the bifurcation equation
S
¢*(p,0,9,£) 98F %l BF'(.,2%,2%,0,0,q,f) = 0.

From the definition of F' in (2.3), the above

equation has the form

G+(o.a:g,f) = =X + %J plcos(--a) + f(.=a)]

+ Go(puu"],f) =0

where G_(p,a,q,f) = O(lolz) as |p] + 0. Solving the abave

equation is equivalent to solve

Y (8,u,0,9,£) 98% g + n*(a,q,£) + Gy (8,u,a,9,8) = 0

where H+(S,p,u,g,f) = G+(8u.u.aoq.f)/u ’ Gl(Boooupqof) = 0 ad

(2.5) h*(a,g,f) = %J plcog(e=q) + £(+=a)].

An easy calculation shows that h* may be written in the form

h+(a,q.t) = 6-%] pcos)sina + %J pf(+=a)

and then ah*(+/2,0,0)/3a = 0, 3°h*(1/2,0,0)/3a > 0. Hence,
1f 8, = h'(x/2,0,0), we have au*(s,,0,1/2,0,0)/3a = 0,
32H+(Bm,0,n/2,0,0)3c2 > 0. The Implicit Function Theorem
implies there is a ¢ > 0 and a unique function




+ +
a_ = um(B,u,q,f) for |8 - ¢

m |r }l" and !giz + |f|m less

m

than satisfying u;(ﬁm,0,0,0) = /2, 3H+(b,u,a;,g,f)/aa = 0.

|
| . +
: Thus, the function Mm(ﬁ,u,g,f) = H+(!,u,v;(w,“,u,f),q,f)) is a

minimum of H' with respect to o for the other variables fixed.
Since M'(8_,0,0,0) = 0, 3M'(8_,0,0,0) /58 = -1, the Implicit
Function Theorem implies there is a unique function i*(u,q,f)
for |u], lg|2 + If|_ less than § satisfyina 8*(0,0,0) =8

m ’

1 M (B*(u,q,f) ,u,a,f) = 0. There are two solutions of

+ 3+

H (B,u,a,9,f) = 0 on one side of the curve £ = B*(u,q,f) and
no solutions on the other side. The function £* defines the
curve C: by the relation A = B*(u,aq,f)u.

By exactly the same idea we obtain a function

I

+ . +
JM(b,u,g,f) satisfying aM(BM,O,O,O) = 3r/2,

H'(8,u,a5,9,f) /30 = 0 where By = h'(31/2,0,0) .For a=ab(B,u,g,f),

the function H;fe,u,;,g,fi is a ﬁaxim;m. Following é;
the last paragraph,we obtain the curve C;. In figuré (1-b),
those curves define the sector R u R’ where we have homoclinic
poinﬁs near I’ and R U R~ where we do not have.

By using the same procedure with the solution g(t) of

equation (2.2) satisfying q(t) 0 as t-+> +* , g(0) < 0,
q(0)=0,T ={(q(t),q(t)):t €EIR}, we obtain the hifircatim curves tohomoclinic
1l

points in the left side of S , cm and C;, respectively defined by the

equations M;(B,u,g,f) = H-(e,u,u;,g,f) = 0 and
My(6,u,9,£) = H (8,u,04,9,f) = 0 where a_ (v, ,0,0,0) = 31/2,
= h™(n/2,0,0).

a;(yM,O,O,O) =1/2, v, = h~(31/2,0,0), Ym

We will define now the manifolds Mm ’ MM s0 that
the analysis described in (i) becomes obvious. The curves C;
and C; will coincide if and only if Fm(ﬁ,u,g,f) -

- 1 _ .2
= M'(8,0,9,£) - M_(8,u,9,£) =0 and Cy = C; if and only if
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+ -
FM(B,u,g,f) = MM(B,u,g,f) - MM(B.u,q.f) = 0, Let us define

W= {(g,f) : |g|2 + |f|eo < &},
“m = {(g,f) « W : Fm(B,u,g,f) = 0},
My = t(g,£) « W Fo(8,u,9,f) = 0},

All the statements in Theorem 1.1 are now clear, except those
concerning the codimensions. We will prove below that codim
M = 2 and we observe that the same proof shows ihat Mm and
MM have codimension one.

In order to show that codim M = 2, 1let us consider

two linearly independent directions from (g,f) = 0 de€fined as

follows: we take

g(x) = ga(x) = %axz,
f(t) = fb(t) = bgin2t

for la| and |b| sufficiently small. A straightforward

calculation shows that, if
p,(t) = 4L/ al+4 (et + % + 2a771,

then p=p, and q=-p_,, and the functions F, Fy are

given by

Fm(s su,a2,b) = -%f (L’pacos)cose; + Zb([.p.ooszo)cuze;]

1 L] - L ] -
+ -‘-[ ( I-.p_‘coq)cosem +2b(L.p _.conz-)caaom]

+ G;\(G B 'a,b) ’

PRI 4o . SRV Lt

CaT el el s aa e sk .
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1. (" + [’ +
'—)[ (J_mpacos)coseM + 2b( pacosz-)coszeMJ

4 amp

FM(B,u,a,b)

M 2b(f p_,c082-) cos28,,]

<

l o
El(J_mp_acos)cosu

+ Gy(8,u,a,b) ,

where Gg(s,o,a,b) = Gg(s.o,a,b) = 0. The expression
8m = Om(B,u,a,b) 1is defined by ap(8,u,a,b) = 7/2 + 67(8,u,a,b)
and hence e;(am,o,o,O) = 0. Analagous observations for the
cther 6's.

We must show that the Jacobian determinant
det a(Fm,FM)/a(a,b) is different from 2zero for (a,b) = (0,0)
and !u| small. The partial derivatives evaluated at (8,0,0,0)

are given by

oF 3F

m _ [ 2 - - M
T3 j_”sech cos/no = 32 ¢
(2.6)
aF ® aF
M . = —M
3a 4I-usechcosz /no 75
where ng = J pg . Clearly, we only have to show that both

integrals in (2.6) are different from zero. Evaluating them by

the method of residues, we obtain

2n

14

j sechcos2: = 2ne /1 + e

-n/2

J sech?cos = re /1 - e 7.

This completes the proof.

RV

et e AR At b, i+ 4'._ pan
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We observe that when lglz and |f]_  are
sufficiently small, with g(-x) = -g(x) and f{t+r) = =£(t),
then (g,f) is in M. In fact, one can prove in this case

that the bifurcation functions satisfy G+(X,u.m+n,g,f) =

= G.(A i\loupq'f) .

TN EE o SRR T TR
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3. Perturbation of the subharmonics: the symmetric case

] For the equation

o i g o

3

(3.1) X - x+ 2x7 + g(x) =0,

let p and g be as in the proof of Theorem 2.1, pé(t) the
solution satisfying pé(O) = (1+8)p(0), pG(O) =0 for § >0
1 and Igi2 in a neighborhood of zero. Then, p,  is periodic

with least period w(§) and w(8) + » as & - 0 and

40 (pg(t) ,pg(t)) lies outside S for all t € RR.

If k is a positive inteqger, let ék be such that

R R

m(ék) = 2kn and Py = Pg - For a 2r-neriodic function F
k
and a real number A, let

]

kn
I bk(t)F(t-u)dt ’

1K (@) .
-kn i

H (a) j [B(t) + AG(t) IF(t-a)dt . ‘

-

Lemma 3.1. 1f F(t+2%x) = F(t) is given, then for

every ¢ » 0, there exists an integer K such that

1,k 1.8
1-3;§r_(a) - 25| < e |Fi,
e da

for 1 =0,1,2, 1if one the following conditions is satisfied:
fa) k XK, k odd, A = =1 and F odd harmonic in PZn'

(b) k - K, k evenand 4 = 1. ;

Proof: Let ¢ > 0 be given and suppose k odd,

A= <~]1 and F(t+n) = «F(t). We will prove first that

o e el e
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o

|waéFj--u) - Jmﬁp(.-u, - J

P F=a) | < 3|F|,
(&)

-k

for k 2 K., The case i =0 will be proved since the other
part is symmetric.
Let T = T(k) be the point in (0,kn) for which

pk(T) = 0. By choosing K sufficiently large we have

-T w .
lj PF (+=a) - J qF (-=a) | <« %!F!w s k K.
-an T

Now,
o} {T -T o ’ f
?[ PF(+~a) = qF(+=a) = j ka(--u) - J ka(--a)l =
e lo -k -7
o T -T+kn o
= lJ PF(e=a) - I 4qF(*=a) + J pk(--ku)F(--uﬁ - I ka(--a)I.
-7 o) o -T

By making the change of variables x = p(t), x = g(t),
X = pk(t-kn) and x = p,(t) separately in each one of the
above integrals and denoting the inverses respectively by tT(x),

t (x), t;(x) and t;(x) , the last exnression becomes

p(0) Py (0)
IR IO L I e T BN
p(-T) ‘o
ql(T) O -
N e IO BENR Fltp(o)=a) ],
q(0) Tpy (=kn) ’

If we fix o, 0 < o0 << 1, then we have for the first madulus
in the above expression, say Ilz




o
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o] »(0)
I, < 1[ Fit ()=a) | + |J" FUE (=) = F(EL()=a)]] + i
1 o peen : - Sl |

o (0)
+ lj F(t;:(-)-u)l + ’ka Fitt(-)-n)|
) o p(0)

Since t;(x)-a t+(x) uniformly in comnact sets'and §np + O as
n + =, the last expression can be made less than (e/8)|F|
for large k and small o. For the second modulus, similar
estimates can be obtained taking into account that t;(x) + t 7 (x)
uniformly in compact sets and pn(-nn) + q(0) as n -+ =,
For the case i = l, we note that
k kn=a
H (a) = J bk(-+u)F ’
~kn-a

and since pk(kn) = pk(-kn) =0,

k kn=-a
3H - - >~
o (a) = J . P (-+a)F .
Knt=0
Similarly,
an® ® .
e {a) = J [P(e+a) = g(-+a) IF .
If F is a smooth 2n-periodic approximation of F , we define
-~ kn=a -
#*(a) = J’ (-+a)F,
-kn-a

#(a) = J [B(-+a) = &(-+a) IF .
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Hence,
k ~A - kn .
LI CE TH TI
© -kn
A ~A o
oH oH ~ .
() - By s (- FL[ 1B -l

If F 1s sufficiently close to F , each of the above expressions

can be made less than (e/3)|F|_. On the other hand,

A ~k
|-2E—(a) - (o) =
r“ d kn '
= |J-w(p-Q)a-F(‘-a) - J pka—-l"('-lh .

The proof of part i = 0 shows that, for large k, the last
expression can be made less than (e/3)|F|_ .

Finally, for i = 2,

32Hk o .
-—-—T.(m) = -p(kﬂ')f‘(kn-u) + i)k(_kﬂ)F(-k“-a') +
da

kn~a
+ I pk('#a)l’.
-kn-a
Since P is continuous then azﬂk/aa2 is continuous and the
same holds for azﬂA/aa2 . Similar estimates can be obtained
taking into account that p(-k») = ﬁk(kw) is bounded as k-+ =,
Part (a) is then proved. The proof of part (b) is analogous,
with obvious modifications. The proof is complete.

By using the same steps of the last proof, one can

prov§ the following resule:

Py AR T Y L IGC. 2 oY 7T
LA ARPIIINCIETRE DS SIPR) « T vp.";‘:;:«dfﬂfrf-‘“w&,» .

ol oo

- -
T

. .t

a7

NPT SR W

-~
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Lemma 3.2. If p, q and p, are as above and 1if

(Fk(t)) is a uniformly bounded sequence with F in P such

k 2k
x * F uniformly in compact sets as k - =, then for

that F
every ¢ > 0, there is a K such that

rkﬂ [Bad

SIS S SRR O

-kn < =
holds, if one of the conditions (a), (b) in Lemma 3.1 is satisfied.
In (a),thecondition on F is replaced by Fk 14 harmonic in
Pan y
Let us consider now the equation (2.1) with the

symmetric conditions g(-x) = -g(x} and €(t+r) = -£f(t). 1In
this case, the solutions p and q of (2.2) defining r*, I~ satisfy
g(t) = -p(t) for t in R. We seek here subharmonics of order

+

k for k odd, 50 let h =nh from Theorem 2.1, that is,

h{a,q,f) = %J plcos(+=a) + £(--a) ).

We recall from that proof that 3h(=/2,0,0)/3a =0,
azh(n/z,O,O)/au2 > 0 and so there exists a unique function
at(g,f) for Igl2 + |£|_ small, satisfying
dh(at(g,f) ,a,f)/3a = 0, aR(0,0) = =/2. So, ar(q,f) 1is a
point of minimum for h(a,qg,f). Also, there is a unique
function aﬁ(g,f) with af(0,0) = 31/2 such that aa(g,f)
is a point of maximum for h(a,q,f).

For k an odd integer, let

1 (ke ke 2
(3.2) hyla,g,f) = .—nl-‘..l_k“pk[coﬂ.-a) + £ema) 1, "k'I.k,pk‘

oo
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e gt <

By Lemmas 3.1 and 3.2, there exists a X such that each hk

for- k * K, k odd, has a minimum at ai(q,f), a maximum at

ax(g,f) and u; - “& ' ah > u& as k » «, Let us also

e

assume here that

2 duw
(3.3) -d—o.(ﬁ) « 0

for & - 0 in a neiqghborhood of zero. Let Cn and CM be the

bifurcation curves defined in Theorem 2.1, part (iv). We can now

prove the following result:

Theorem 3.1. Under the above conditions, there are {
neighborhoods U of S, V of & =0 and an integer K such

that for any odd integer k 2 K, there are two Cz-curves C; v

} Ct in V respectively tangents to 1\ = h (a )u A = hk(cM;u

at p =0 so that those curves divide V into disjoint sectors
RS, Rg such that equation (2.1) has no subharmonics of least ,
period 2kt in U x R for o € Rg and at least two for o--Rk.

k k
Furthermore, Cm -~ Cm and CM - CM as k + = along the odd

integers.

Proof. In this proof, k will always be an odd
integer. We choose K so that for k » K the orbit
Iy = {(py(t) By (t)) : t ¢ R} 1is contained in the set U of
Theorem 2.1. If x(t) 4is a solution of (2.1), the change of

variables

x(t=a) = p,(t) + z(t)

leads equation (2.1) to . '

R ;)—'4,«41"’-¢W@
""-‘.,4 '..-‘
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+

zZ+0~1+ 6pk(t)2 g'(pk(t))]z = Fk(t,z,z,p,a,q,f)

(3.4)

Fk(tlzitlf?lalglf) -)‘f’k(t) -2z + v ens(t=1) + f(t=a)i

ka(t)zz - 220 - alp, (U+2) + g(p (6)

+

g'hk(u)z.

For the equation 2z + (-1 + ka(t)2 + Q'(pk(t)]z = F(t)
where F is 2kn-periodic, hypothesis (3.3) implies it has a
2kn=-periodic solution if and only if
kr
J pﬁt)F(t)dt =0,
-kx

If P is the contirious projection defined on P2k“ by

k

‘ kn Ko 2
! PkF = f)kj k ka/nk ’ "\k = } r.)k ’
-kn ~kn

then there is a unique 2kn-veriodic solution KkF with injitial

o

value orthogonal to (pk(O),ﬁk(O)), and K, cefined on (I-gJPZRH
is continuous and linear. Furthermore, there exist constants

C and B8 > 0 independent of k such that

T T N T T

-plt ;

# (3.5 |k (=P Fl, = ce™ Rl je K
4
F (see 1], Lemma 11.4.6). Therefore, equatlion (2.1) has a
L.
E 2kn-periodic solution near p, if and only if

(a) Pka(',Z,z,o,u,q.f) = 0

(3.6)
(b)  z = K (I=PL)F) (+,2,2,0,a,9,f) .

[EEPPSFVIES
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We can now use the Contraction Mapping Principle to
1ation (3.6-b). By using estimates (3.5) and the fact
and pk are uniformly bounded in R, we obtain & >0
0 independent of k such that equation (3.6-b) has a
>lution z¥ = z}(p,a,qa,f) for o} - ¥, !qlz + |£] <8
1g |z§| < v. Thus, subharmonics of order k near T

k
rmined by the solutions ., o of the bifurcation

1 jkT’-

G (olulglf) =
k "k J-kn

kak('azilzipDIng'f) = 0.

ore, the number v can be chosen so that all
nics that are obtained in that way belong to the
hood U of .
By the definition of F_ in (3.4), the above equation

form

-2 + Uhk(avq:f) + ak(P:QJQIf) =0

k(pra,g, f) = O(Iplz) as |p| » 0. The bifurcation

; ' cg are now obtained by exactly the same

C
e as in Theorem 2.1. 1In order to prove the statement
rgence, we observe first that zi is odd harmonic, and
k(-,zi,i;,p,a,g,f). Furthermore, since P * P and
uniformly in compact sets as k » =, then

0ra,9,£) - F+(t,z,2,p,u,q,f) uniformly for all the

8 in compact sets, and from Lemmas 3.1 and 3.2,

Ft uniformly in compact sets as k » ~, k odd. By
ty with respect to initial data, z; » z} and so

zﬁ,p,a,q,f) » F+(t,z;,z;,o,u,g,f) uniformly in compact

e oo
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+
sets. Lermmas 3.1 and 3.2 now imply Gkhuu,q,f) -+ G (p,a,q,f) as

¢ » =, k odd, for ‘si and |a', + {57!

2 P sufficiently small,

2!t kv. The proof is complete.

3
i
E
*
s




b
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4. The nonsymmetric case

Let p(g),q(g), |912 sufficiently small, be the solutions
of (2.2) defining the homoclinic orbits P+(g),r°(g) in the proof
of Theorem 2.1. Suppose 9 is a fixed function, p = P(go).

q-= q(go), and 99 satisfies the nonsymmetric condition

(4.1) Jw[fa(t) + G(t)] cos t dt # 0 .
In order to fix ideas, let us suppose the integral in (4.1)
is positive.

Our objective is to discuss the existence of subharmonic
solutions of (2.1) of order k, k even, outside T+(g) u {0} U T (g)
for g in a neighborhood of 95 and f in a neighborhood of zero.
To simplify notation, let p = p(g), q = qa(g). From Lemma 3.1,
we expect tha curves of bifurcation of these subharmonic solutions

tc be related to the function

H{n,a,f) %[ (5 + q)fcos(«~r} + £(-=a)] ,

-
c= e ap.

-

It is easy to sce that [ may be writtcen in the form

o

} (p+qg)coslisina + %g (B+Y) £ (o=a) .

) -

H(a,9,6) = -3

We then notice that JH(u/Z,qO,O)/Jw = 1, \%u«/zmb,on@az- 0
and so there is a unique function n;(q,f) defined for

lg - 90!2 + 't{ small satisfying A5 00 = /2 and
aa(g,f) is a point of minimum for H(:,,f), Also, there is a
uniqae function  uf(q,f) for fag - 9giy * i), small
sutisfying aﬁ(go,O) = 3n/2 and uﬁ(ﬁ,f) is a noint of

maximum for H{x,a,£) .

ERR BT RSN SR LA SO L R b e




For k an even integer, let Hk(u,q,f) be defined by

formula (3.2). By Lemmas 3.1 and 3.2, therce exists an inteqer K

such that each function Hk ’ for k ' kK, ¥} even, has a
, k , k k
minimum at um(q,f), a maximum at aM(u,f) and am aa,

a; -+ uﬁ as k » «. We will also assume that hypothesis (3.3)
is satisfied. By exactly the same procedure as in Theorem 3.1,

we can prove.

Theorem 4.1. Under above conditions, there are
neighborhoods U of S, V of » =0 and an integer K such

that for any even integer k - K, there are two C2-curves

k k . . . N _ k
Cm ’ CM in V respectively tangents tao P Hk(am)u .

A= Hk(u;)u at uw = 0 so that those curves divide V into
disjoint sectors Rk ' Rg such that equation (2.1) has no

subharmonics of least period 2kn in U ~ & for o in Rz
and at least two for op in Rk. Furthermore, the above
tangents apnroach A= H(u;)u ’ o= H(uﬁ)u respectively as
k 4 ‘n.
by b — " ” o AR £ L TR BTN e T
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